MULTIPLE CHOICE. (3 points each)

1) Which one of the following substances is the product of this combination reaction?
 \[\text{Al(s)} + \text{I}_2(s) \rightarrow \text{______} \]
 A) \text{AlI}_3 \quad \text{B) AlI} \quad \text{C) Al}_2\text{I}_3 \quad \text{D) Al}_3\text{I}_2

2) The formula weight of aluminum sulfate (\text{Al}_2(\text{SO}_4)_3) is ________ amu.
 A) 150.14 \quad \text{B) 59.04} \quad \text{C) 273.06} \quad \text{D) 342.14}

3) How many moles of pyridine (\text{C}_5\text{H}_5\text{N}) are contained in 3.13 g of pyridine?
 A) 25.3 \quad \text{B) 0.319} \quad \text{C) 0.0396} \quad \text{D) 0.00404}

4) Lead carbonate decomposes to give lead oxide and carbon dioxide:
 \[\text{PbCO}_3(s) \rightarrow \text{PbO(s)} + \text{CO}_2(g) \]
 How many grams of lead oxide will be produced by the decomposition of 0.00935 mol of lead carbonate?
 A) 0.00936 \quad \text{B) 0.41} \quad \text{C) 2.09} \quad \text{D) 2.50}

5) Pentacarbonyliron (\text{Fe(CO)}_5) reacts with phosphorous trifluoride (\text{PF}_3) and hydrogen, releasing carbon monoxide:
 \[\text{Fe(CO)}_5 + 2\text{PF}_3 + \text{H}_2 \rightarrow \text{Fe(CO)}_2(\text{PF}_3)_2(\text{H}_2) + 3\text{CO} \]
 The reaction of 5.0 mol of \text{Fe(CO)}_5, 8.0 mol of \text{PF}_3 and 6.0 mol of \text{H}_2 will release ________ mol of \text{CO}.
 A) 5.0 \quad \text{B) 12} \quad \text{C) 15} \quad \text{D) 24}

6) Sulfur and fluorine react in a combination reaction to produce sulfur hexafluoride:
 \[\text{S(s)} + 3 \text{F}_2(g) \rightarrow \text{SF}_6(g) \]
 In a particular experiment, the percent yield is 79.0%. This means that a 7.90-g sample of fluorine yields ________ g of \text{SF}_6 in the presence of excess sulfur.
 A) 7.99 \quad \text{B) 10.1} \quad \text{C) 0.110} \quad \text{D) 24.0}

7) Of the species below, only ________ is not an electrolyte in water.
 A) \text{HCl} \quad \text{B) KOH} \quad \text{C) Ar} \quad \text{D) NaCl}

8) The balanced molecular equation for complete neutralization of \text{H}_2\text{SO}_4 by \text{KOH} in aqueous solution is ________.
 A) 2 \text{H}^+(aq) + 2 \text{KOH (aq)} \rightarrow 2 \text{H}_2\text{O (l)} + 2 \text{K}^+(aq)
 \text{B) } \text{H}_2\text{SO}_4(aq) + 2 \text{KOH (aq)} \rightarrow 2 \text{H}_2\text{O (l)} + \text{K}_2\text{SO}_4(aq)
 \text{C) } \text{H}_2\text{SO}_4(aq) + 2 \text{KOH (aq)} \rightarrow 2 \text{H}_2\text{O (l)} + \text{K}_2\text{SO}_4(s)
 \text{D) } \text{H}_2\text{SO}_4(aq) + 2 \text{OH}^-(aq) \rightarrow 2 \text{H}_2\text{O (l)} + \text{SO}_4^{2-}(aq)

9) Which one of the following compounds is insoluble in water?
 A) \text{NaCl} \quad \text{B) Fe(NO}_3)_3 \quad \text{C) NaC}_2\text{H}_3\text{O}_2 \quad \text{D) ZnS}
10) Which one of the following is a diprotic acid?
A) hydrofluoric acid B) nitric acid
C) sulfuric acid D) phosphoric acid

11) Which one of the following is a weak acid?
A) HF B) HClO₄ C) HCl
D) HNO₃

12) Based on the activity series, which one of the reactions below will occur?
A) Zn(s) + MnI₂(aq) → ZnI₂(aq) + Mn(s)
B) 3 FeBr₂(aq) + 2 Au (s) → 3 Fe(s) + 2 AuBr₃(aq)
C) 3 Hg(l) + 2 Cr(NO₃)₃(aq) → 3 Hg(NO₃)₂(aq) + 2Cr(s)
D) 2 AgNO₃(aq) + Pb(s) → 2 Ag(s) + Pb(NO₃)₂(aq)

13) Oxidation is the __________ and reduction is the __________.
A) loss of oxygen, gain of electrons B) gain of electrons, loss of electrons
C) loss of electrons, gain of electrons D) gain of oxygen, loss of mass

14) Which one of the following is a correct expression for molarity?
A) mol solute/ L solution B) mol solute/L solvent
C) mmol solute/L solution D) mol solute/mL solvent

15) How many grams of NaOH (MW = 40.0) are there in 500.0 mL of a 0.175 M NaOH solution?
A) 114g B) 3.50g C) 2.19 x 10⁻³g
D) 3.50 x 10⁻³g

16) What is the molarity (M) of an aqueous solution containing 52.5 g of sucrose (C₁₂H₂₂O₁₁)in 35.5 mL of solution?
A) 5.46M B) 1.85M C) 0.104M
D) 4.32M

17) Of the following, which one is a state function?
A) H B) w C) heat
D) q

18) A __________ ΔH corresponds to an __________ process.
A) negative, endothermic **B) negative, exothermic**
C) positive, exothermic D) zero, exothermic

19) Which one of the following statements is true?
A) **Enthalpy is a state function.**
B) Enthalpy is an intensive property.
C) The enthalpy change for a reaction is independent of the state of the reactants and products.
D) H is the value of q measured under conditions of constant temperature.

20) The value of ΔH° for the reaction below is -790 kJ. The enthalpy change accompanying the reaction of 0.95 g of S is __________ kJ.

\[
2S(s) + 3O₂(g) \rightarrow 2SO₃(g)
\]
A) -790 B) -23 **C) -12** D) 12
21) The value of ΔH° for the reaction below is +128.1 kJ:
$$\text{CH}_3\text{OH}(l) \rightarrow \text{CO}(g) + 2\text{H}_2(g)$$
How many kJ of heat are released when 5.10 g of $\text{H}_2(g)$ is formed as shown in the equation?
A) 62.0kJ B) 162kJ C) 128kJ D) 326kJ

22) The units of specific heat are _______.
A) J/g°C B) g°C/J C) J/°C D) °C/J

23) Which of the following is a statement of Hess's law?
A) The ΔH for a process in the forward direction is equal to the ΔH for the process in the reverse direction.
B) The ΔH of a reaction depends on the physical states of the reactants and products.
C) If a reaction is carried out in a series of steps, the ΔH for the reaction will equal the sum of the enthalpy changes for the individual steps.
D) The ΔH for a process in the forward direction is equal in magnitude and opposite in sign to the ΔH for the process in the reverse direction.

24) The temperature of a 15-g sample of lead metal increases from 22°C to 37°C upon the addition of 29.0 J of heat. The specific heat capacity of the lead is _______ J/g°C.
A) 29 B) 0.13 C) -29 D) 1.9

25) A chemical reaction that absorbs heat from the surroundings is said to be _______ and has a _______ ΔH at constant pressure.
A) endothermic, positive B) endothermic, negative
C) exothermic, negative D) exothermic, positive

Problems (SHOW ALL WORK ON THIS PAPER)

(5 points) From the heats of reaction:

<table>
<thead>
<tr>
<th>Reaction</th>
<th>ΔH</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2 \text{H}_2(g) + \text{O}_2(g) \rightarrow 2\text{H}_2\text{O}(g)$</td>
<td>-483.6 kJ</td>
</tr>
<tr>
<td>$3 \text{O}_2(g) \rightarrow 2 \text{O}_3(g)$</td>
<td>+284.6 kJ</td>
</tr>
</tbody>
</table>

calculate the heat of the reaction:
$$3\text{H}_2(g) + \text{O}_3(g) \rightarrow 3 \text{H}_2\text{O}(g)$$

<table>
<thead>
<tr>
<th>Reaction</th>
<th>ΔH</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3/2 (2\text{H}_2(g) + \text{O}_2(g) \rightarrow 2\text{H}_2\text{O}(g))$</td>
<td>$3/2(-483.6 \text{kJ})$</td>
</tr>
<tr>
<td>$-1/2 (3\text{O}_2(g) \rightarrow 2 \text{O}_3(g))$</td>
<td>$-1/2(+284.6 \text{kJ})$</td>
</tr>
</tbody>
</table>

$$3 \text{H}_2(g) + 3/2\text{O}_2(g) \rightarrow 3\text{H}_2\text{O}(g)$$
-725.4 kJ

$$3/2 \text{O}_3(g) \rightarrow \text{O}_2(g)$$
-142.3 kJ

$$3\text{H}_2(g) + \text{O}_3(g) \rightarrow 3 \text{H}_2\text{O}(g)$$
-867.7 kJ
(10 points) The complete combustion of octane, \(\text{C}_8\text{H}_{18} \), proceeds in the following manner:

\[
\text{C}_8\text{H}_{18}(l) + 25 \text{O}_2(g) \rightarrow 16 \text{CO}_2(g) + 18 \text{H}_2\text{O}(l)
\]

How many grams of \(\text{O}_2 \) are needed to burn 7.50g of \(\text{C}_8\text{H}_{18} \)?

\[
\text{mol } \text{C}_8\text{H}_{18} = \frac{7.50 \text{g}}{114.18 \text{g/mol}} = 0.0657 \text{mol}
\]

\[
\frac{25 \text{O}_2}{\text{mol } \text{C}_8\text{H}_{18}} = \frac{x}{0.0657 \text{mol}}
\]

\[x = 1.64 \text{ mol } \text{O}_2\]

\[g \text{ O}_2 = 1.64 \text{ mol } \text{O}_2 \left(32.0 \text{ g/mol} \right) = 52.5 \text{ g}\]

(10 points) A 2.200g sample of quinine (\(\text{C}_6\text{H}_4\text{O}_2 \)) is burned in a bomb calorimeter whose total heat capacity is 7.854kJ/°C. The temperature of the calorimeter increases from 23.44°C to 30.57°C. What is the heat of combustion per gram of quinine AND per mole of quinine?

\[
q = -C_{\text{cal}} \Delta t
\]

\[= -7.854 \text{kJ/°C} (30.57°C - 23.44°C) = -55.99 \text{kJ}
\]

per gram

\[
\Delta H = \frac{-55.99 \text{kJ}}{2.200 \text{ g}} = -25.45 \text{kJ/g}
\]

per mole

\[
\Delta H = \frac{-55.99 \text{kJ}}{\left(2.200 \text{ g/108.04 g/mol} \right)} = -2750 \text{kJ/mol}
\]